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Abstract Can all the properties of a system composed of
particles with masses, mi , and charges, qi , be determined
from the charge density and the mass density? Subject to a
small statistical caveat, this is true, and offers the prospect of
an elegant extension of density-functional theory beyond the
Born-Oppenheimer approximation.
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1 Introduction

Consider a system composed of p distinct types of elemen-
tary particles, which are presumed to interact only via elec-
trostatic and gravitational forces. Neglecting relativity, the
Hamiltonian has the form [1]:
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where v(rαi) is the external potential that confines the Nα par-
ticles of type α. The Hohenberg-Kohn theorem applies to the
case where there is only one type of particle in the system—
say, electrons. In this case, the density of particles determines
all the properties of the system. One often states that, unlike
the wave function, the density of particles is experimentally
observable. However, what one really observes via photon
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(X-ray) or neutron scattering is the charge density,
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or mass density,
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When there is only one type of particle, both the charge den-
sity and the mass density are directly proportional to the par-
ticle density.

The extension of the Hohenberg–Kohn theorem to sys-
tems composed of many different types of particles was first
considered by Capitani et al. [1] who showed that if you
know the particle densities of each different type of particle,
{ρα(r)}pα=1, then all properties of the system are determined.
[2] However, densities of the particles composing the system
are usually not experimentally observable. (Constructing the
particle densities for a p-component system requires one to
find p experimental “probe particles,” each of which inter-
acts in a distinct way with the particle types that compose the
system.)
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Is it possible to determine the properties of the system
from the charge density and mass density alone? This is
usually the case. To see this, consider the following extension
of the Hohenberg–Kohn Theorem [2]:

Lemma Consider a system composed of p distinct types of
particles. Suppose that the number of each type of particle,
along with the masses and charges of the particles, is known.
Then all properties of the system can be determined from the
mass and charge density.

Proof If the mass, charge, and cardinality of each distinct
type of particles is known, then we can be sure that the Ham-
iltonian has the form of Eq. 1, where only the external poten-
tials are unknown. If, as assumed here, the particles interact
only via gravitational and electrostatic forces, the external
potential will be due to fields of these types also, and so the
energy of the system can be written as:
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where −∇v(m)(r) and −∇v(e)(r) are the external gravita-
tional and electric fields, respectively. Consider a second
choice for the external potentials, ṽ(m)(r) and ṽ(e)(r), and de-
note the ground-state wave function and densities for these
potentials as �̃, ρ̃(m)(r), and ρ̃(e)(r). From the variational
principle for the energy, one has that
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where we have defined, in analogy to the usual definition of
the Hohenberg–Kohn functional,
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In using a strict inequality for Eq. (5), it is assumed that the
external fields of the two systems are not the same, which
requires that the external potentials differ by more than an
additive constant.

Adding Eqs. (5) together yields
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ρ(m) (r) − ρ̃(m) (r)

) (
v(m) (r) − ṽ(m) (r)
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Equation (7) cannot hold if ρ(m) (r) = ρ̃(m) (r) and ρ(e) (r) =
ρ̃(e) (r), implying that systems with different external electric
and gravitational fields always have different mass and charge
densities. Consequently, the electric and gravitational field
are functionals of the mass and charge densities. This allows
one to determine the electrostatic and gravitational poten-
tials (to within an immaterial additive constant), yielding the
Hamiltonian, Eq. (1). The Schrödinger equation can then be
solved and all properties of the system (e.g., the energy—cf.
Eq. (4)) can be determined. ��

It remains to be shown that the identity (which determines
the characteristic masses and charges) and number of parti-
cles in the system can be determined from the charge density
and the mass density. To clarify the situation, consider the
case where there are only two different types of particles. By
integrating the mass density one can find the total mass of
the system, giving the equation

N1m1 + N2m2 = mtotal =
∫

ρ(m) (r) dr. (8)

Suppose this equation has two solutions; then

(N1 − n1) m1 + (N2 − n2) m2 = 0
N1 − n1

N2 − n2
= −m2

m1
. (9)

The left-hand side of Eq. (9) is necessarily a rational number.
If we presume, however, that the masses of elementary par-
ticles are taken “at random” from the positive real numbers,
the right-hand-side of Eq. (9) is, with probability one, an irra-
tional number. (There are infinitely more irrational numbers
than rational numbers, which is obvious from the fact that the
set of rational numbers is countable, while the union of the set
of rational and irrational numbers (the set of real numbers) is
not. From a different perspective, since each successive digit
in the mass of a particle should be independent of those that
came before, it is infinitely unlikely that the mass of a given
particle will be a repeating decimal. Rational numbers are
always representable as repeating decimals.)

Thus, with probability one, Eq. (8) has but one solution.
This is not to say that this is the case in numerical work.
Given the finite experimental precision with which the masses
of elementary particles and nuclides are known, in practical
work the masses and ratios of masses of the particles will
always be rational. However, for small systems, the left-hand-
side of Eq. (9) will be a fraction with a small denominator,
whilst the right-hand-side will, with high probability, not be
reducible to a fraction with a small denominator.
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The extension of this argument to more than two types of
particles is straightforward; specifically, one desires that the
equation

p∑

i=1

(Ni − ni) mi = 0, (10)

where Ni and ni are restricted to be nonnegative integers, to
have only one solution (with Ni = ni for all i). (In Eq. (10),
p is the total number of particles under consideration; for
chemical purposes this set likely consists of common nuc-
lides, electrons, and perhaps—if one is interested in exotic
matter—a few of the more stable elementary particles.) Sta-
tistically speaking, each of these masses would be an irratio-
nal number. To investigate solutions to Eq. (10), it is useful
to restate the equation as the vector equation,

d · m = 0 (11)

where the elements of m are the masses of the particles in
question. If m is a p-dimensional vector, there will be a
(p − 1)-dimensional subspace that solves Eq. (11). We need
to investigate whether there any integer vectors in this sub-
space and, if so, whether N = n ± d � 0. Denote basis
vectors of the orthogonal subspace as (that is, the basis set
for the vectors that satisfy d · m = 0) as {bi}p−1

i=1 . Since the
elements of the basis vectors are normalized linear combina-
tions of the particle masses, they are also usually irrational
numbers. Equation (11) becomes equivalent to the question
of whether one can find numbers, ki , such that the vector
p−1∑
i=1

kibi is a vector of nonnegative integers. While equations

of this type can have solutions, the probability that it has
a solution is zero. Thus, with probability one, knowing the
mass density of a system determines the identity and quantity
of particles that compose the system. Referring to the lemma,
it follows that, with probability one, the charge density and
mass density determine all properties of a system.

There are, of course, vectors of integers, d, that almost
solve Eq. (11). For example, there will be solutions with
d·m � 10−9. Since particles’masses are only known to finite
precision, any solution that has smaller error than the error
in the input masses should be accepted. In practice, many
nuclide masses are known to a precision of about 10−9u, so
d · m � 10−9 is often a reasonable standard. For systems
with only a few nuclei, however, the magnitude of the solu-
tion vector tends to be about |d| = 109, which gives patently
absurd choices for the numbers of nuclei.

This is best illustrated by an example. Consider isotope-
labeled ethanol, 14

6 CH3 − 12
6 CD2OH. In this system we have

26 electrons (m = 5.485799095 ·10−4u), one Carbon-14 nu-
cleus (m = 14.003241988 u), one Carbon-12 nucleus
(12.000000000u), four protons (m = 1.0078250321 u), two
deuterium nuclei (m = 2.0141017779 u), and one Oxygen-
16 nucleus (m = 15.9949146196 u). Presume, for simplicity,
that we know the types of nuclei but not the number of nuclei,
then the mass vector has only 6 terms, and is given by [4,5]

m =
[
me m1

1H m2
1H m12

6C m14
6C m16

6O

]T

. (12)

We now need to study solutions to Eq. (11), subject to the
caveat that d is a vector of integers. Moreover, since the num-
ber of particles of each type should be positive, the sum of
the known solution, n = [

26 4 2 1 1 1
]T

, and ±d should
be positive. Since there are only six different masses in this
problem, there is a five-dimensional vector space of solu-
tions to Eq. (11). Because m is a vector of rational numbers
(owing to the finite precision of the experimental measure-
ment), there will be elements of this vector space with integer
coefficients, but it is unlikely that these coefficients will be
small. As a rough guess, the typical size of the integer coeffi-
cients will reflect the precision of the experimental masses,
so with masses accurate to a 10−9u, we expect for nontriv-
ial integer solutions to Eq. (11) to feature ridiculously large
numbers—on the order of 108.

Numerical solution of the equation (11) found no reason-
able nontrivial solutions. Solutions do exist, but among the
elements of d is a large negative integer, which is inconsistent
with the fact that the alternative assignment of nuclei to the
molecule (given by n ± d) is nonnegative. Among the solu-
tions located, the one with the smallest magnitude was d =[

0 0 0 3,500,810,497 −3, 000, 000, 000 0
]T

,
but this clearly does not refer to a “real” solution, since a
molecule cannot have a negative number of atoms of any iso-
tope. If the numerical precision of the nuclide masses were
smaller, however, then the size of the elements of d would
also be smaller and, perhaps, more reasonable. By contrast,
in the hypothetical limit of infinite precision measurements
we expect that the magnitude of d will tend toward infinity,
so that there is no feasible solution.

It is important to note that it is usually impermissible to
have both particles and antiparticles in one’s system: since a
particle and its antiparticle have the same mass, one cannot
determine the partitioning between antiparticles and particles
from the total mass alone. However, since a particle and its
antiparticle annihilate, giving photons, this may be viewed as
an “excited state;” consequently, this limitation is just a gen-
eralization of the usual caveat that density-functional theory
is a theory of ground states. The inability to treat particle-
antiparticle pairs is also unproblematic since, in general, such
interactions should be treated in a relativistic framework.

Though treating nuclear forces in the context of non-rela-
tivistic quantum mechanics is very questionable, if one does
so–introducing the “color charge” density, ρ(c)(r), and the
“weak charge” density, ρ(w)(r), to model the strong and weak
nuclear forces, respectively, then one obtains an attractively
symmetric theory with four fundamental densities (corre-
sponding to the four fundamental forces) in four dimensions
(three spatial dimensions plus time).

Aside from its conceptual interest, this result may have
computational potential. The original result of Capitani,
Nalewajski, and Parr was proposed to develop a “non-Born-
Oppenheimer” density-functional theory. [2] For this appli-
cation, the number and types of nuclei under consideration
is usually small and, moreover, known. (Often, in fact, one
would treat only the light nuclei quantum mechanically, lump-
ing the effects of heavier atoms into the external potentials.)
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With identity and quantity of particles known, it follows from
the lemma (there is no need for the probabilistic argument)
that the charge and mass densities determine everything about
the system, and the resulting theory certainly has a simpler
structure (it is a bifunctional theory, rather than a p-functional
theory) than the result of Capitani et al.. [2] In addition, if
one is primarily interested in the electronic properties of the
system, an important effect is the “smearing” of the positive
charges on the nuclei, which is directly discernable from the
mass and charge densities. In fact, one can determine “nu-
clear” and “electron” densities directly from the mass and
charge densities using the equations

(−e) ρ(electron) (r) +
(

e

p−1∑

i=1

NiZi

)
σ (nuclear) (r) = ρ(e) (r)

(me) ρ(electron)(r)+
(

p−1∑

i=1

Nimi

)
σ (nuclear) (r) = ρ(m) (r) .

(13)

Here, the electron is considered to be the pth type of parti-
cle, and so the pth term in the summations is omitted. Using
Eq. (13), the charge density and mass density of each atomic
nucleus can be determined by multiplying the total nuclear

charge or total nuclear mass by the nuclear “shape function,”
σ (nuclear)(r).
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